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NATIONAL ADVISORY COMMITTEE FOR AFRONAUTICS
TECHNICAL NOTE NO. 1859

A METHOD OF CALCULATING A STABILITY BOUNDARY THAT DEFINES
A REGION OF SATISFACTORY PERIOD-DAMPING RELATIONSHIP
OF THE OSCILLATORY MODE OF MOTION

By Leonard Sternfleld and Ordway B. Gates, dJr.
SUMMARY

A method has been derived by which a boundary can be obtained that
defines a region 1n which there exists a satisfactory relationship
between the period and damping of the lateral oacillatory mode of motion,
according to any given criterion for this relationship. 1In addition,

a method is discussed by which curves representing a congtant rate of
spiral divergence may be constructed.

The methods as presented are applicable to both lateral-stability
and longitudinal-stability analyses.

INTRODUCTION

In lateral-stability analyses it 1s the usual practice to calculate
a neutral-oscillatory-stability boundary that i1s plotted as a function
of the directional-stability derivative CnB and the effective-dihedral

derivative CIB. This boundary has a special significance, since for a

particular airplans it indicates the combinations of Cn and CZ

B B
necegsary for oscillatory stability. Although this boundary is definitely
an aid in a stability analysis, its value is somewhat restricted in that

it affords no information about the variation of the periocd-demping
relationship throughout the stable region. That is, that region of

the CnB,CZB plane in which a given criterion for satisfactory relationship

of the period and damping of the oscillatory mode will be satisfied

cannot be determined from this boundary. This information can be obtained
by using the methods described in reference 1 to calculate curves of
constant period and constant damping, but because of the complexity of

the calculations involved, a more direct approach to the problem is
desirable. In the present paper a method is derived by which it is possible
to obtain directly a boundary, plotted as a function of an and CZB’
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that will define a region in which there exists a satisfactory relation-
ship between the period and damping of the oscillatory mode of motilon,
according to a prescribed criterion for this relationship.

For the combinations of CnB and C.LB necegsary to satisfy various
criterions for the period and damping of the oscillatory mode, undesirable

spiral instability may be present. In view of this fact a method is also
presented by which curves representing & constant rate of spiral divergence

may be constructed.

SYMBOLS AND COEFFICIENTS

¢ angle of roll, radians

¥ angle of yaw, radians

B angle of sideslip, radians (v/V)

v gideslip velocity along the Y-axis, feet per second -
v airspeed, feet per second

p mass density of air, slugs per cubic foot

q dynamic pressure, pounds per square foot <%pVé>
b wing span, feet
S wing area, square feet
W weight of airplane, pounds
m mass of airplane, slugs (W/g)
g acceleration due to gravity, feet per second per second
by, relative-density factor (m/pSb)
n inclination of principal longitudinal axis of airplane with respect
to flight path, positive when principal axis is above flight
path at the nose, degrees .
4 angle of flight path to horizontal axis, positive in a climb, degrees
kXo radius of gyration in roll about principal longitudinal axis, feet -
kzo radius of gyration in yaw about principal vertical axis, feet
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nondimensional radius of gyration in roll about principal
longitudinal axis (kX O/b)

nondimensgional radius of gyration in yaw about principal
vertical axis (kz o/b)

nondimensional radius of gyration in roll about longitudinal
stability axis (JKibzcosgq + Kzogsingn

nondimensional radius of gyration in yaw about vertical
2l 2,92
stability axis cos + Ky “sin
Yy <Vkio n | Xo n

nondimensional product-of-inertia parameter

((KZ02 - KX02> sin n cos n>

trim 1ift coefficient (W_E.SS_Z>
q

qSb

Yawing moment
qShb

Tateral force
qs

rolling-moment coefficient (Rolling moment>

yawing-moment coefficient (

lateral-force coefficient<

effective-dihedral derivative, rate of change of rolling-moment
coefficient with angle of sideslip, per radian (acz /BB)

directional-stability derivative, rate of change of yawing-moment
coefficient with angle of sideslip, per radian (8Cn/BB)

lateral-force derivative, rate of change of lateral-force
coefficient with angle of sideslip, per radian (BCY/BB)

damping-in-yaw derivative, rate of change of yawing-moment
coefficient with yawing-angular-velocity factor, per

radian (BCH/B§%>

rate of change of yawing-moment coefficient with rolling-angular-
velocity factor, per radian <BCn/B£%)

damping-in-roll derivative, rate of change of rolling-moment
coefficient with rolling-angular-velocity factor, per

radian (501/8§$>
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C rate of change of rolling-moment coefficient with yawing-angular-
velocity factor, per radian <501/B£%>

CY rate of change of lateral-force coefficlent with rolling-angular-
P velocity factor, per radian ch/agh
: 2v
CYr rate of change of lateral-force Coefficient with yawing-angular-
velocity factor, per radian <acx/6§$>
Cl rate of change of rolling-moment coefficient with angle of roll,
¢ per radian (BCI/B¢
t time, seconds
8 nondimensional time parsmeter based on span (Vt/b)
Dy differential operator-<
Rl Routh's discriminant
Xl complex root of stability equation

MFYim3+o2 e +E=0 (—Xl.=a+im=Rele>

_cos nb _8in nb
damping felationS}lip <€n =T ' m = Rl for 0 Sn<h
Ao spiral stability root of stability equation
b+ m3 2 + DV +E=0
P period of oscillation, seconds

Tl/2 time for amplitude of oscillatory or spiral mode to decrease to
one-half its original value

T time for amplitude of oscillatory or spiral mode to increase to
double its original value

A,B,C,D,E coefficients of lateral-stability equation
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EQUATIONS OF MOTION

The nondimensional linearized equations of motion, referred to the
stabllity axes, used to calculate the spiral-stability and oscillatory-
stability boundaries for any flight condition, are:

Rolling

2ub<KX2Db2¢ - szm2w>= C1g8 + 3C1,DB¥ + 5C1,Dpf
Yawing

2 (KDY + KzDi2Y ) = Cagh + 200, Dov + 300 D1
Sideslipping

2ub<DbB + wa> = Cygh + %Cprb¢ t o+ %CYrDbW ¥ <CL tan 7)“’

When (oo™ 1s ewbstituted for ¢, ¥oe™"P for ¥, amd Bge™™® for B
in the equations written in determinant form, M must be a root of the
stability equation

AriBm3+ 02+ +E=0 (1)
where
A= 8Hb3<KX2KZ2 - szz>
of.. 2 2 0 2 2
B = -2u <2KKC + Ky°C. + K,°Cy = 2Kgo Cyv - Ky C, - Ky,C
b \PKx Kz Oy, + Ky Cn) + Kz Co - 2Kxz Oy - Bxzbe, Xan>
P 2 2 1
C = pul Kv°C. Cv. + LuKy“Cn. + Ko°Cy Cv. + =C_ C5 - KyoC, C
“b(X n,Cyp * MpKxCng + K270y Cyp * 30n,Cop - KxzCr, Oy

- W KynCr - C. KyoCy = 2C. C, + KyoC, Cv = K,2Cy C
v&x2C15 = On KxzCvy - 500 Puy * Kagbnglr, - X270y O

- Kx°Cy,Cnp + KxzlyyC1 B>
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1 1
D = -Cn,C1.0vp = 101 0ng + FonCeCyp * Hilnglig * 2upCrRxzCng
- EHbCLKZQCZB - QubKXQCnBCL tan 7 + 2ubKXZ01BCL tan 7
+ L0, c Gy - £, 0y Cy - 0y Cp Oy + 30, C; C
}7lpng L np lg Ty T R lp gy T ke lgYy

1 / } 1
— = C - - C
E = 201( n CZB CZ CHB) + —(2 }I tan 7(02 CnB n CZB>

The damping and period of the lateral oscillation in seconds are given
by the equations

-0 P
Tife = ——523 %
o - 0:693D
27 a V
6.28 b
P= o V

where a and ® are the real and imaginary parts of the complex root
of stability equation (1). The damping of the spiral mode of motion in
seconds is glven by the equations

_-0.693 b

=", v
0.693 b

T, = 522 3
ANALYSIS

Method for constructing a boundary that defines a region of satisfactory
period-damping relationship.- For the derivation of a method by which the
period-damping relstionship of the lateral oscillatory mode may be expressed
as a function of CnB and CZB, the following assumptions are made:

1. The stability equation is given in the conventional
form MY + B3+ A2 + DL+ E =0
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2. The coefficients A, B, C, D, and E are functlons of the
stability derivatives, all of which have prescribed values with the
exception of CnB and CZB.

3. The stabillity equation has for one of its roots

M =&+ im = Relf

where

6 = tan™1 &

a

and

R = Va2 + of
This root A1 represents an oscillatory mode of motion, the period of
which 1s given by P = %f % and the time required for the amplitude of

the oscillation to damp to one-half its original value is given
by Tl/2 = .V Substituting Re for A 1in the stability equation,

and noting that elnf _ cos no + 1 sin ng, results in the expression
AR*(cos 46 + 1 sin 46) + BR3(cos 30 + 1 sin 30)
+ CRP(cos 26 + 1 sin 20) + DR(cos 6 + 1 sin 6) + E = O (2)

Equating to zero real and lmaginary parts in equation (2) gives the
equations

ARYcos 46 + BR3cos 30 + CR2cos 26 + DR cos 6 + E = 0

N 3 (3)
AR*sin 46 + BR’sin 36 + CRPsin 26 + DR sin 6 = O

Multiplying the first eguation of equations (3) by cos 49,_the.second
by sin 46, and adding the two resulting equations give the expression

Aeg + Bep + Cep + Deg + Ee), = 0 (%)
where
€, = 208 né
RY

Similarly, multiplying the first equation of equations (3) by sin hG, the
second by -cos 40, and adding the two resulting equations give the
expression

Ay + B@ + Cgy + D¢3 + E¢), =0 (5)
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where

gin nb _ -
¢n = Rn"'l

Since 6 and R are functions of the terms a and « of the root M),
the velues of the factors € of equation (4) and @, of equation (5)
will be fixed for specified conditions of period and damping. Therefore,
solving equations (4) and (5) simultaneously results in the Cnﬁ,CzB

combination that satisfies any desired period and damping relationship
of the oscillatory mode. '

If a sultable criterion exists for the damping of the lateral oscilliatlon
expressed as a function of the period, for example,

this criterion will be expressible in terms of a and o by an equatim
of the form

z0.693 b _ pf2x D
a V w V

Thus, for any given period, there exists a corresponding value of the
damping term a necessary to satisfy the criterion. The terms ¢, .
of equation (4) and terms @, of equation (5) are expressed in terms

of R and 6, which are functions of & and ® (% = a2 + af
and 6 = tan™t ®Y; therefore, curves showing the variation of €p
a,

and ¢n with the period of the oscillation that will satisfy the gilven
criterion can be constructed. For any value of the perlod P the
values of €, and ¢n may be teken from these curves and substituted

in equations (4) and (5). The corresponding CnB,C-LB values may then

be determined from & simultaneous solutlon of these equations.

It is important to note that the method described is applicable
to any criterion for satisfactory damping of the oscillatory mode
expressed as a function of the period. If the criterion 1s expressed
in terms of the number of cycles required to damp to half amplitude,
that is, Cy/p = £(P), the preceding method can still be applied

T1/2
since 01/2 = 5
General procedure for use of the method.- In the analysis of a .
given airplane the coefficients A, B, C, D, and E of equatlon (1) are
evaluated in terms of the known or prescribed values of all the
stability derivatives except two [usually CnB and CIB which are left in .

symbolic form. A point on a curve, plotted as a fundtion of the two
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derivatives chosen to be variables, defining the region of satisfactory
period-demping relationship is obtained in the following manner: For an
arbitrary value of the perlod P, values of €L and ¢n are taken from
previously constructed curves that satisfy the desired criterion for
period-damping relationship of the oscillation. These values are substi-
tuted in equations (4) and (5), together with the expressions for the
coefficients A, B, C, D, and E. The two equations are then solved
simulteneously for the variable derivatives. By repeating the process
for successive values of P the desired boundary will be obtained. In
order that the significance of the boundary thus obtained be clearly
understood it is necessary to know on which side of this boundary there
exlistes a satisfactory period-damping relationship according to the pre-
scribed criterion. A method for obtalning this information is discussed
in appendix A.

Application of the method presented to longltudinal-stabillty enalyses.-
It should be pointed out that the methods presented herein are not limited
to an analysis of lateral stability but can be readily employed in the
longlitudinal-stebility analysis as well. If a sultable criterion exlsts
for the period-damping relationship of the longltudinal oscilllatory mode
of motion, curves of @ and €n plotted against P cean be constructed
and points on a boundary defining the region in which this satisfactory
relationship exists between the period and damping of the longitudinal
oscillation can be calculated. The coefficients A, B, C, D, and E to
be used in the simultaneous solution of egquations (4) and (55 for the
longitudinal case must, of course, be the coefficients of the longitudinal-
stability biquadratic. The variables of interest become, instead of Cnﬁ

and ClB, any two appropriate parameters for longitudinal stabllity.

Method for constructing curves of constant rate of spiral divergence.-
For the combinations of CnB and CzB necessary to satisfy various cri-
terions for the period and damping of the oscillatory mode, undesirable

spiral instaebility may be present. In view of thls fact 1t 1s desirable
to know something about the divergence gradient throughout the CnB,CzB

plane.

The usual method of obtaining this information involves the solution
of a serles of stability blquadratics, often a rather laborious procedure.
The following method is presented which gives the desired information with
a minimm of calculations.

Assume that the lateral-stability biquadratic (equation (1)) has as
one of its roots A = Ap. This substitution for A In equation (1)
results in the expression ‘

Axgu + Bk23 + cxgg FDy +E=0 (6)

where the coefficients A, B, C, D, and E are functions of Cp, and CIB
as before. If As = O, equation (6) is reduced to the equation "E = 0,
which defines the boundary of neutral spiral stability. However, if A, 1s
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agsigned a finite value representing a given rate of divergence, equa-
tion (6) becomes a definite function of Cp 8 and Cj 8" The solution of this

resulting equation for a sequence of values of C gives the corresponding
ng

values of Cy on a curve representing a constant rate of divergence of

the spiral mode of motion. These curves can be constructed for as many
values of XE as may be necessary for an adequate analysis of the

gpiral instability of a particular airplane.
TLLUSTRATIVE EXAMPLES AND DISCUSSION

In order to meet the present Navy-Air Force flying-qualities requirement
(references 2 and 3) the period and damping of the lateral oscillation
mist satisfy the following criterion:

T, =1.5 (0 < Pg2)

1/2 =
A/ (7)

T , =2.5P -3.5 (2<P<w)

1/2
This criterion is illustrated in figure 1.

As an example of the methods presented, calculations were made for the
hypothetical high-speed airplane described in table I by using equation (7)
as the criterion for satisfactory damping of the lateral oacillation.

€n : n
e QNI e
(v/v)" (V/p)*
of the period P are presented in table IT and the variations of thege
factors with P are shown in figure 2. Note that the ordinates in figure 2

The values of the factors for a sequence of values

€

- n 2o nn—l
(v/®) (v/p)
curves in figure 2 will apply for any airplane at any flight condition if
the criterion described in equation (7) is used. For a number of values
of P, the values of € and ¢n were determined from these curves-and

are rather than ¢, and ¢n in order that the

were then substituted in equations (4) and (5), and the corresponding
Ch ’CZ values were obtained from a simultaneous solution for these

equations.

The boundary, plotted as a function of CnB and CZ , defining the
B
region that satisfies the period-damping relationship given by equation (7Y
is presented in figure 3. TFor purpose of comparison the neutral-oscillatory-
stability boundary (Ry = 0) for this airplane is also plotted in figure 3.




NACA TN No. 1859 11

From ingpection of the Rl =0 boundary this airplane is seen to be

oscillatorily stable for almost any combination of C, and CZB shown

B
in the figure. This boundary, however, gives no indication of ths degree
of stability present at any point in the quadrant. The curve defining
the Navy-Air Force criterion for satisfactory damping of the lateral
ogscillation clearly shows that the criterion is satigfied in only a
relatively small part of the stable region of the CnB,CZB plane.

Figure 3, therefore, clearly illustrates that the stability of a given
airplane cannot be accurately evaluated by merely congtructing the Rl =0

boundary and noting on which side of this boundary stability exists.

Additional calculations were made in order to obtain curves of
congtant rate of spiral divergence for this airplane, and the regults are
presented in figure 4. Should a criterion for the rate of spiral diver—
gence be esgtablished, 1t will then-be sufficient in a given spiral-

stability enalysis to plot only the curve representing that rate of
divergence.

The roots of the lateral-stability biquadratic usually indicate the
presence of one periodic and two aperlodic modes of motion. If this be
true, only one chrve defining the regi'on of satisfactory period-damping
relationship of the periodic mode would exist. If, however, the roots
indicate the presence of two periodic modes of motion, two or more branches
of this curve may exist.

Thus, reference 4 shows that for an airplane equipped with an
automatic pilot that applies aileron control proportional to the dis-

placement in roll, the roots of the stabllity equation will represent two
ogscillatory modes of motion. Calculations were made for thils confilguration
by using the stability derivatives and mags characteristics presented in
table I of reference 4. Points on the boundary of satisfactory period-
damping relationship were calculated for Clﬁ = -0.10 by using as
variables the directional-gtability derivative Cnﬁ and the deriva-

tive C; due to the automatic pilot. The equations and coefficients

presented in the section entitled "Equations of Motion" were modified to
take into account the derivative Cz in the gsame manner as wasg done in

reference 4,

The results of these calculations are presented in figure 5. For a
number of pointg in the CnB’CZp plane, roots of the stability equation
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were calculated in an effort to understand more clearly the signifilcance

of each of the branches of the boundary presented in this figure. The
results of these calculationa are glven in table III. At point A the
roots repregent two periodic modes, neither satisfying the Navy-Air Force
criterion. Upon passing through the branch of the boundary in the upper
quadrant to point B, the period-damping relationship of one of the
periodic modes becomes satisfactory while the other remains unsatisfactory.
At point C the relationship of the unsatisfactory modes has improved some-
what and the other mode remaing satisfactory. At point D the previously
satisfactory periodic mode has become two aperiodic modes, one of which

is unstable. The period-damping relationship of the, periodic mode is now
gatigfactory. At point E the periodic mode has again become unsatisfactory
and the two aperiodic modes are stable. ' Thus, the only part of

the CnB,CZp plane that completely satisfies the Navy-Air Force criterion

is that area on the unhatched gide of the branch of the boundary appearing
in the lower quadrant. It ghould be pointed out that although the
oscillatory mode satisfies the Navy-Air Force criterion within this area,
the ingtability of one of the aperiodi¢ modes is such that the region

may be of little practical value.

CONCLUSIONS

The following conclusiong were made from a theoretical investigation
to develop a method of calculating a stability boundary that defines a
region of satisfactory period-damping relationship of the oscillatory
mede of motion:

1. Through uge of the methods pregented a boundary can be obtained
that defines a region in which there exists a satisfactory relationship
between the period and demping of the lateral oscillatory mode of motion,
according to any given criterion for this relationship.

2. A method is also presented by which curves representing a constant
rate of spiral divergence may be constructed.

3. These methods, which are developed in detail herein for the
analysis of lateral stability, are adaptable as well to the analysis of
longitudinal stability.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., February 23, 1949




NACA TN No. 1859 ' 13

APPENDIX A

A METHOD FOR DETERMINING ON WHICH SIDE OF THE BOUNDARY
OF SATISFACTORY PERIOD-DAMPING RELATIONSHIP
A GIVEN CRITERION IS SATISFIED
If the stability bilquadratic has for one of 1ts roots A = a + iw,

it can be shown from reference 1 that the followlng parametric equatlons
are satlgfiled

f) - ufy3=0 (A1)
£ - uf, + 0eM), =0 : (a2)
where
b= o
£ =A% +Ba3 + Ce2 + Da + E
f1 = bAa3 + 3Be? + 2Ca + D
fp = GAa® + 3Ba + C
f3 = bha + B
f), = A

The coefficlents A, B, C, D, and E appearing in the expressions for f,
f1, fp, f3, and f), are those of the characteristic stability equation.

These coefficlents are functions of the stability derivatives, two of
which are assumed to be varilable.

If the parsmeter u 1is eliminated between equations (Al) and (A2),
the expression obtained is

(fof3 - £1f))f1 - £3°2F = 0 (A3)

This equation represents a curve of constant damping a, and the frequency
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of the oscillation at any point on the curve can be calculated by using
equation (Al). If a = 0, equation (A3) reduces to the famillar expres-
sion for the neutral-oscillatory-stability boundary (BC - AD)D - B°E = O.

Now, for every point on the boundary of satisfactory period and
demping, plotted as a function of any two arbitrary derivatives x and y,
a root A} = a + 1w will exist that exactly satlsfles the prescribed

criterion. Assume that at a particular point on the boundary (x1,y1) the
root is A} =ay] + w3. If a=@a and x =X =x3 +Ax be substi-
tuted in equation (A3), the value y = yp, which is located on & curve

of constant demping, can be calculated. By substituting a3, Xp, and yo
for a, x, and y, respectively, in equation (A1) the value of u, and
hence ap, is determined at the point (xp,yp). If the root aj + 1wy at
point (xg,yg) gsatisfies the prescribed criterion, the region in which
this point is located is the satisfactory region with respect to the
boundary defining the criterion. :

An imaginary velue of ap at point (xp,yp) indicates that no com-
plex root with the real part equal to &y exists at this polnt, since wp
must be real if the root aj + iwp 1s to represent an oscillation.

That 1s, aj + 1wy will represent two real roots- and before the

point (xg,yg) can be established as satisfactory or unsatisfactory, the
other. two roots of the stability equation must be determined. However,
if Ax 1s chosen small enough, wpo will be real.

In general, the satisfactory region may also be readily ldentified
if roots of the stability biquadratic are calculated at several points
of interest. A method of evaluating the roots of a quartic equation is
presented in appendix B.
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APPENDIX B
METHODS FOR EVALUATING THE ROOTS OF A QUARTIC EQUATION

Various methods exist for evaluating the roots of high-order poly-
nomials (references 5 and 6). Many of these methods, although highly
accurate, become rather leborious in actual application.

A method developed by Lin (reference 5) and independently by Doris
Cohen of the NACA (unpublished) affords a means of evaluating roots of
high-order equations with a minimum of computation. This method is
bagically one of synthetic division and under certain conditlons, which
are discussed subsequently, the desired roots can be obtained very

rapldly.

In order to illustrate the method conslder the quartic equation

Mam3+f 4o+ E -

As a first approximation, assume that the equation has the quadratic

factor A° + Jv + k where J = % and k = %. Division may then be

performed as follows:

M+ (B-r+C-k- 3(B- )
M ap At i3+l + D0+ E

[c-x-3B-"¥+[D-x@-Nr+E
[c-x-3B- 9% +3[-x-3B-r+kC-x-JB-J)

Remainder

If the remainder 1is equal to zero or negligible, the two quadratics
obtained are good approximations to the factors of the guartic equation.
If the remainder is not negligible, the procedure is repeated by using
as the second approximation the factor A2 + J'™ + k' where

v oD - k(B - J)
S TT-E- B -
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_ E
TC-k- 3(3B-J)

kl

This operation is continued until the remainder is negligible. The results
usually converge rapidly if the frequencles of the two modes are of differ-
ent orders of magnitude or if the gquartic equation has small real roots.

The usefulness of the method is greatly reduced in cases where the results

converge slowly.

A substitute method has been derived by théfauthors to be used as a
means of obtaining the roots of the quartic equation if the method of
reference 5 converges slowly.

It can be seen from the division performed previously that
if A2 + ) + k is a factor of the guartic equation, two parametric equa-

tions must be satisfied, namely

D-k(B-J)=JIC-%x- 38- iﬂ

(B1)
k[c-x- 3@ - J)

LI

E

The method consists in solving these two equatiohs simultaneously for J
and k. A convenient procedure 1s as follows:

Equations (Bl) are rearranged in the form

B -FPB+IC-D_
23 - B

k 0

(B2)

K2 - (f-B+Ck+E=0

The first of equations (B2) is readily solved for k for any given
values of J. A series of corresponding values of J and k are computed
in this way. For each corresponding J and k the value of the left-
hand side of the second egquation of equations (B2) is evaluated. This
value is plotted as ordinate against J as abscissa. The intersection

of the curve with the j-axis evidently determines the solution for J.

The solution for k is obtained upon substitution of this value of |

back into the upper equation. The values of j and k thus obtained

may be substituted back into the lower equation to check the solution.

The methods presented are readily adaptable to egquations of any even
order. In the case where an uneven-order equation should appear, the
logical procedure is to obtain a real root by synthetic division and there-
by reduce the equation to an even order.
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TABLE III

NATURE OF ROOTS OF STABILITY EQUATION

IN Cng,Cyy PLANE

Point
(see Pig. 5) | 1/2 T P
10065 - 1‘--95
A
» 3 008 mm—— 1 019
9.95 ---- T-05
B
3 016 Sm—— l 053
772 ---- | 30.2
c
3.50 -—-- 2.16
1.02 1.65 Aperiodic
D
4.20 ---- 3.15
79 ———
. o .503 Aperiodic
-m-- 2.39 7.93

“!ﬂgﬂ!"’
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Figure 5.— Boundary defining region of satlsfactory period—damping
relationship according to Navy-Alr Force criterion., Airplane with
automatic-pilot coupling of aileron to angle of bank.




